Haffner SM, Kushwaha RS, Foster DM, Applebaum-Bowden D, Hazzard WR.
Studies on the metabolic mechanism of reduced high density lipoproteins during anabolic steroid therapy.
Metabolism. 1983 Apr;32(4):413-20.
ABSTRACT: To explore the mechanism whereby stanozolol, a 17 alpha-methyl androgenic anabolic steroid, depresses high density lipoproteins (HDL), 6 subjects, aged 46-71 yr (4 postmenopausal women and 2 men), underwent paired studies of 125I-HDL turnover (including HDL2 and HDL3 and Apo A-I and A-II) and postheparin plasma (PHP) lipolytic activity (hepatic triglyceride lipase, HTGL, and lipoprotein lipase LPL) before and during treatment with stanozolol, 6 mg/day. While total cholesterol and triglyceride levels did not change during stanozolol, HDL-cholesterol decreased from 59 +/- 18 mg/dl (x +/- SD) to 29 +/- 7 mg/dl (p less than 0.01) and low density lipoprotein (LDL)-cholesterol increased from 160 +/- 36 mg/dl to 181 +/- 42 mg/dl (p less than 0.02). PHP-HTGL increased from 111 +/- 47 nmole/min/ml to 369 +/- 202 nmole/min/ml (p less than 0.04), while PHP-LPL did not change. At baseline the residence time of HDL2 (4.00 +/- 1.04 day) was shorter than that of HDL3 (6.79 +/- 1.00 day) (p less than 0.001). Residence times of both declined on stanozolol, to 3.25 +/- 0.83 day and 4.00 +/- 0.29 day, respectively (0.1 less than p less than 0.2); however, only the reduction in residence time of HDL3 was statistically significant (p less than 0.001). At baseline the residence time of apo A-I (4.93 +/- 1.32 day) was shorter than that of A-II (6.85 +/- 1.98 day) (p less than 0.025); on stanozolol these declined to 3.19 +/- 0.41 (p less than 0.02) and 5.10 +/- 1.13 (p = 0.07), respectively, still significantly different from each other (p less than 0.005).(ABSTRACT TRUNCATED AT 250 WORDS)
0 comments:
Post a Comment