Welcome To SteroidScience.org

A comprehensive resource of relevant human studies of anabolic steroids for bodybuilders, athletes and students.

Preliminary report: kinetic studies on the modulation of high-density lipoprotein, apolipoprotein, and subfraction metabolism by sex steroids in a postmenopausal woman.

. Thursday, 3 July 2008
  • Agregar a Technorati
  • Agregar a Del.icio.us
  • Agregar a DiggIt!
  • Agregar a Yahoo!
  • Agregar a Google
  • Agregar a Meneame
  • Agregar a Furl
  • Agregar a Reddit
  • Agregar a Magnolia
  • Agregar a Blinklist
  • Agregar a Blogmarks

Hazzard WR, Haffner SM, Kushwaha RS, Applebaum-Bowden D, Foster DM.

Preliminary report: kinetic studies on the modulation of high-density lipoprotein, apolipoprotein, and subfraction metabolism by sex steroids in a postmenopausal woman.

Metabolism. 1984 Sep;33(9):779-84.

ABSTRACT: To investigate the effects of estrogens and androgens on the metabolism of high density lipoproteins (HDL) and low density lipoproteins (LDL), a normolipidemic postmenopausal woman was studied under the following conditions: (1) during supplementation with ethinyl estradiol (0.06 mg/d); (2) without sex steroid therapy; (3) during treatment with stanozolol, an androgenic, anabolic steroid (6 mg/d). During these manipulations HDL and LDL cholesterol levels fluctuated widely but reciprocally: during estrogen supplementation HDL increased while LDL decreased; during stanozolol HDL-C decreased while LDL-C increased. Simultaneous changes in post-heparin plasma hepatic triglyceride lipase activity paralleled those of LDL (and opposed those of HDL), decreasing with estrogen and increasing with stanozolol. During all three phases, autologous 125I-HDL turnover studies disclosed similarities between HDL2 and apolipoprotein A-I metabolism and between HDL3 and apolipoprotein A-II metabolism. In the untreated state the residence times of HDL2 and apo A-I were only half those of HDL3 and apo A-II. During estrogen treatment HDL2 and apo A-I, residence times were selectively prolonged, coming to resemble those of HDL3 and apo A-II, which remained unchanged. By contrast, during stanozolol treatment HDL3 and apo A-II residence times were selectively reduced, coming to resemble those of HDL2 and apo A-I, which remained unchanged. Apo A-I levels increased on estrogen and decreased on stanozolol, while apo A-II remained stable. Hence, estrogen increased HDL primarily by retarding the catabolism of the HDL2 subfraction rich in apo A-I, whereas stanozolol decreased HDL by accelerating the catabolism of HDL3, relatively rich in apo A-II.(ABSTRACT TRUNCATED AT 250 WORDS)

0 comments: